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Finite square L • L Ising lattices with ferromagnetic nearest neighbor inter- 
action are simulated using the Swendsen-Wang cluster algorithm. Both thermal 
properties (internal energy U, specific heat C, magnetization ( ]MI) ,  suscep- 
tibility ~) and percolation cluster properties relating to the "physical clusters," 
namely the Fortuin-Kasteleyn clusters (percolation probability ( P ~ ) ,  percola- 
tion susceptibility ~p, cluster size distribution n/) are evaluated, paying par- 
ticular attention to finite-size effects. It is shown that thermal properties can be 
expressed entirely in terms of cluster properties, ( P ~ )  being identical to ( [MI)  
in the thermodynamic limit, while finite-size corrections differ. In contrast, Xp 
differs from X even in the thermodynamic limit, since a fluctuation in the size of 
the percolating net contributes to )~, but not to )~p. Near Tc the cluster size dis- 
tribution has the scaling properties as hypothesized by earlier phenomenological 
theories. We also present a generalization of the Swendsen-Wang algorithm 
allowing one to cross over continuously to the Glauber dynamics. 

KEY WORDS: Percolation; "physical clusters"; Ising model; Monte Carlo 
simulation; finite-size scaling; Fortuin-Kasteleyn representation; Swendsen- 
Wang algorithm. 

1. I N T R O D U C T I O N  A N D  OVERVIEW 

It has been a long-standing idea that the growth of correlations in a 
statistical mechanical system approaching a critical point ought to be 
describable in terms of some sort of "physical clusters. ''~1-6) The critical 
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exponents describing the critical singularities of thermal properties at the 
second-order transition would then be related to the critical exponents 
describing the size distribution of "physical clusters"; and the spontaneous 
order appearing below the critical temperature Tc would be related to the 
formation of an "infinite cluster," i.e., at T c a  percolation transition (7) 
would occur where an infinite percolating network has been formed. But 
for many years it was unclear how to define "physical clusters" having 
these properties. 

Of course, the prototype model for which this nice but qualitative idea 
should be made precise is the two-dimensional Ising model, for which so 
much exact knowledge has been accumulated. (8~ Initially it has been 
thought (1'9'I~ that "physical clusters" in the Ising model can be defined 
simply in geometrical terms of the spin configuration: a group containing 
l overturned spins, where each down spin has at least one other down spin 
as a nearest neighbor, separated from the surrounding up spins by a closed 
contour, is called an /-cluster. Denoting the average number of/-clusters 
per lattice site as nt, the magnetization then can be exactly written as 
( ( - - - )  stands for a thermal average) 

( [ M I ) =  1 - 2  ~ ' l n ,  (1) 
/ = 1  

where the prime indicates that an infinite cluster (if it occurs) has to be 
omitted from the summation. Of course, the above qualitative description 
implies that for T~< Tc only the up spins are percolating, while at Tc an 
incipient percolating cluster of down spins occurs. 

In spite of early numerical evidence (9' lo) for this geometrical cluster (or 
"contour cluster") definition, it now is clear that these geometrical clusters 
cannot be identified with the physical clusters describing a thermal phase 
transition: 

(i) For the three-dimensional Ising model, the geometrical clusters 
percolate already at a temperature Tp~O.96Tc (1~,12)before thermal criti- 
cality is reached. The thermal properties at this temperature show no 
singularity whatsoever. Despite much effort, (~3-~5) the properties of the size 
distribution of the geometrical clusters near Tc in the three-dimensional 
Ising model are not fully understood. 

(ii) In the two-dimensional Ising model, topological considerations 
imply that the percolation transition of geometrical clusters and the 
thermal critical point must coincide. (5) But while the mean size of "physical 
clusters" (expressed by the "percolation susceptibility") Zp 

f: Xp = 12nl (2) 
l = 1  
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ought to diverge for T ~  Tc proportional to the thermal susceptibility 
)~r, ,~(1-T/Tc) -~, it can be shown by series expansions (t6) that 
)~p ~ ( 1 -  T/Tc) -~p with 7p>7. 

(iii) It is not obvious how to explicitly incorporate the up-down 
symmetry of the Ising model above Tc in the absence of symmetry-breaking 
fields into the cluster description. (2'3~ 

Having accepted the fact that the geometrical clusters are on average 
larger than the "physical clusters" hopefully describing critical correlations, 
some prescription must be found by which the geometrical clusters are cut 
into pieces of suitable size, so that they describe the strongly correlated 
parts of order parameter fluctuations. (3'1v) While early phenomenological 
scaling theories (3'17) have assumed the existence of this prescription to 
define "physical clusters" without being able. to specify it explicitly, the first 
explicit construction of "physical clusters" from geometrical ones was 
proposed by Coniglio and Klein/n) They suggested to distinguish between 
active and inactive bonds in a geometrical cluster, with the probability for 
a bond to be active given by 

p = 1 - exp( - 2J/kB T) (3) 

where J is the exchange constant. Now only sites connected by active 
bonds form a "physical cluster." A geometrical cluster thus can consist of 
several "physical clusters," which are disconnected from each other. Equa- 
tion (3) can be shown (4/ to ensure that the percolation threshold and the 
critical point coincide, and at the same time the connectedness length ~p is 
proportional to ~r, and also Zp "~ Zr in this model. 

However, as it stands, the prescription (3) of Coniglio and Klein (4) 
applies to the down spins only, and the problem (iii) of the description of 
the paramagnetic phase remains. 

Parallel to this research activities, a quite independent strand of 
thought developed beginning 1969 with the work of Fortuin and 
Kasteleyn. (24) They introduced a correlated bond-percolation model (the 
random-cluster model) indexed by a real parameter q, and proved iden- 
tities relating the partition function and connectedness probabilities in this 
model (when q = 2, 3,...) to the partition function and correlation functions 
of the q-state Potts model. These identities imply, for example, that the 
susceptibility of the Ising model is equal to the mean cluster size in the 
q = 2 random cluster model. 

Hu, (6) on the basis of this result, suggested to apply active or nonac- 
tive bonds between all pairs of parallel spins, irrespective of whether they 
point up or down, using again Eq. (3). Then problem (iii) is taken care of. 

Swendsen and Wang (23) finally developed a new algorithm which 
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intrinsically constructs these clusters. The relation between these two 
strands of thought merging to the new algorithm and to the results of this 
work have recently been made very clear in a work of Edwards and 
Sokal.(38) 

While the work of Coniglio and Klein ~4~ and H u  (6) proves for the 
"physical clusters" the equivalence of the critical exponents of the percola- 
tion quantities {(IP~I) ,  ;~p and ~p} and the critical exponents of the 
corresponding thermal quantities {(IMI ), Zr and ~r}, nothing is said by 
in refs. 4 and 6 about the critical amplitudes, and the behavior outside the 
critical region. Furthermore, the detailed cluster size distribution has not 
been studied, and the phenomenological scaling theory for "physical 
clusters ''~3) has not been tested. In a preliminary communication, Binder 
and Heermann (18) applied standard Monte Carlo techniques (19-22~ to study 
the cluster size distribution for the two-dimensional Ising model at 
T=0.9Tc. It was found that qualitatively similar behavior of nt as a 
function of l occurs for geometrical clusters and for "physical clusters" 
(according to both the Coniglio-Klein (4) and Hu (6~ definitions). This 
observation makes plausible why the geometrical cluster distribution 
studied by Stolt e t  a/. (9) could be fitted to the Fisher (1) cluster model, which 
is an approximate (3) description of "physical clusters" only. However, 
neither the temperature dependence of nt nor finite-size effects have been 
analyzed yet. 

In fact, applying standard Monte Carlo methods, this task would be 
rather difficult, since a large number of statistically independent spin con- 
figurations is needed to sample the (small) concentrations n~ for large 
cluster sizes l with sufficient statistics, and this is hampered by the strong 
"critical slowing down" of the standard algorithms. For this purpose, the 
algorithm due to Swendsen and Wang (23) is very advantageous, since it 
strongly reduces this correlation due to "critical slowing down"; and for 
implementing the algorithm, all the information on "physical clusters" has 
to be generated anyway. Hence, we have used this algorithm for our 
investigation throughout; we briefly review it and its theoretical foundation 
in the next section. Section 3 then answers the questions posed above, 
providing explicit relations which link the thermal properties to their per- 
colation counterparts. Section 4 describes our corresponding numerical 
results, and also presents a finite-size scaling analysis. Section 5 then 
presents the cluster size distribution n l, also paying particular attention to 
the contribution from the largest clusters in the system. Finally, Section 6 
summarizes a few conclusions and points out directions of future work. 
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2, T H E  S W E N D S E N - W A N G  (23) A L G O R I T H M  
A N D  ITS F O U N D A T I O N  DUE TO T H E  
F O R T U I N - K A S T E L E Y N  ~24) M A P P I N G  

In this section we briefly review the theoretical foundations of the 
Swendsen Wang algorithm, which is based intrinsically on the construc- 
tion of clusters. In order to get an easy approach to the connection of 
Fortuin and Kasteleyn's work to the Swendsen-Wang algorithm and the 
problem of how to define appropriate "physical clusters," we will not use 
their original notations, but a form which directly shows up the transition 
probabilities from one state to another and was first proposed by Sokal 
and Edwards. (38) Then it will be easy to extend their original treatment to 
allow for arbitrary cluster definitions depending on a set {Xo} of 
parameters, 0 ~< x~ ~< 1. 

Given a lattice with Ports spins ~ =  1,..., q on the sites and bond 
variables n o = 0  (open), I (closed) on the edges, we define the joint 
probability of a certain realization of Potts and bond variables as 

P(c;,n) =Z-1 I~ [(1--Po) 6n~,o + Pv6,~io/5,,~,l] (4) 
(i,j) 

with 

Z = ~  [I [(1--Pu) 6n~,o+PoSo~,jgn~,X] (5) 
a n (i,j) 

The Po are given by the couplings J0 between the spins, P0 = 1 - e x p ( - J ~ ) ,  
~ =  {ai}, and n =  {no}. This is the so called FKSW model (Fortuin- 
Kasteleyn-Swendsen-Wang model) of ref. 38. Summation over all bond 
configurations yields 

P(~) = ~ P(a, n) (6) 
n 

1 

= Z - 1 H  E [(1-Po)6,,~,o+Pu6,,i~,j6,,o,1] 
(i,j) n u = O  

=Z-1 [I [(1-Po)+Pij6o,J 
(i,j) 

= Z - l e x p l - -  ~-~ J ~ ( l - ~ j ) ]  
(i,j) 

= Z -1 exp[ - -H(a)]  (7) 

with Z = Zo e x p [ - H ( a ) ] ,  respectively, and H(a)----5Z<~,j) Ju(1 --5~v) the 
Hamiltonian of the Potts model. 



590 D'Onor io De Meo e t a L  

On the other hand, we can evaluate the sum over all spin configura- 
tions and obtain 

P(n) = ~ P(a, n) 
(r 

�9 " , = ( ~ >  n,j 1 <~>,mj=o 

In the last expression all the terms in the sum with a closed bond between 
two spins in distinct states will vanish, so if we denote by o-" a spin 
configuration compatible with the restriction for two spins to be parallel if 
connected by a closed bond, we get 

P ( n ) = Z - I ~ [  [I Pi/ l~ ( 1 -  p~)] 
" , , ~  <~j> n v 1 < U > , n 0 = 0  

The terms in the sum are now independent of the spin configuration. Given 
the bond configuration, the sum just counts the number of compatible spin 
configurations. If we define as a cluster the set of bond-connected spins, 
we get 

P(n) =Z-1 ]-[ P~ l-I (1-po.)q c(') (9) 
< i j ) , n i j ~  l < 0 ' > , n ~ = 0  

with q the number of possible spin orientations, e.g., Potts states, and c(n) 
the number of clusters of the given bond configuration n. Equivalently, 

Z = ~ [  FI pu FI ( 1 - p ~ ) r  '{~)] 
<lJ>'" , n,j..= 1 < i j > , n l j = O  

This is just the partition function of the random-cluster model introduced 
by Fortuin and Kasteleyn. (24) 

For every joint probability we have the identities 

P(a, n) = P(a In) P(n) = P(nla) P(a) (10) 

which imply the microreversibility condition. Now we can calculate the 
conditional probabilities to get from a bond configuration to a spin 
configuration and vice versa: 

P(nla) P(a,n) P(a) 1-I [(1-Po)6.~,o+P~6.~,~] ~I 3n0,o (11) 
< / j > , o ' i =  aj  < i j>,  o ' i #  aj 

is the probability to obtain the bond configuration n given the spin con- 
figuration a. In the case ai # a /on ly  open bonds are allowed; in the case 
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O- i ~-O'j a closed bond is put with probability Po and an open bond with 
probability 1 -  Po" We have 

P(a,n)=q ~(.) H 6 o r  (12) 
<O>,n~= 1 

for the probability to obtain the spin configuration a given the bond con- 
figuration n, flipping the c(n) clusters of n independently in one of the q 
Potts states with the restriction the spins of one cluster to be in the same 
state. 

The Swendsen-Wang algorithm is nothing but the repeated applica- 
tion of the two transition probabilities. We have immediately 

with 

= Z T:,:P(.) 
G 

T~,~= ~ P(~r'ln) P(nl(r) 
1l 

describing a Markov chain with the canonical equilibrium distribution of 
the Potts model as eigenvector. 

In the following treatment we will extend the FKSW model to allow 
for arbitrary cluster definitions. Let n 0 assume three values, no=  - 1 ,  0, 1; 
we will denote them by saying no. is an energy, an open, or a closed bond, 
respectively. Let us further introduce a new set of real parameters x0, 
0 ~ x U ~< 1, and define an extended F K S W  model: 

Pe(G, n ) = Z e  t H {(1 - po)[Xogno,o +(1 - - X i j ) ( ~ n i j , _ l  ] 
<O> 

+pob,~,v[x~611,j,1 + (1 - x ; j )  6,,j, 1]} (13) 

with 

ze=EE 1] {(1-po)[Xo6oo,o+(1-Xo)6.o, 1] 
o- n <O> 

~- P ij(~ aiaj [ X o~  nlj, 1 "q'- ( 1 - -  X ij ) f~ nij, -- 1 "] } = Z 

In the case x o = 1, for all i, j we retain the original F K S W  model. 
It is now convenient to define a cluster surface energy, where a cluster 

is still defined as the set of all spins which are connected by a closed bond 
(n 0 = 1). For  a given cluster there is a unique set of boundary bonds, e.g., 
bonds between a spin of the cluster and a spin not belonging to the cluster. 

822/60/5-6-5 
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The boundary bonds of a cluster by definition are either energy or open 
bonds (nu= -1 ,  0). Let 

Ec,=�89 Z 
<~>c/ 

be the associated cluster surface energy which is affected only by boundary 
energy bonds between spins in different states. The sum goes over all pairs 
(i,j> with at least one site belonging to the cluster. The total surface 
energy is then given by 

E~(a ,n)= ~, E d =  ~ Ju(1-5~,~j) (14) 
a l l  c l u s t e r  < i j  >, nij = - -  1 

The factor 1/2 cancels out by counting the boundary bonds twice in the 
first sum. With p/j = 1 - exp(-J,7) we finally obtain 

exp [ -Es (a ,  n)] = 1-I [(1-Po)+Pj),~,~j] (15) 
< i j > , n q =  - -1  

Performing the same calculations as for the initial FKSW model yields 

and 

P ( a ) = ~  P~(G n)=Z -~ I-I [(1 -pij)+ p~f~,oj] 
n <0"> 

(16) 

P(n) = ~ P~((r, n) 

' , . . ~  <tj> n~j 1 < i j > , n i j = O  

' - ,  . . =  <q> n,j - i  

�9 " = 
( t j )  n t j  1 < q > , n q =  1 

In the last sum all the terms involving configurations with connected spins 
not in the same state vanish, and with (15) we obtain 

P(n) = ~ Pe(ff, n) 

= Z-  l (<o.>,.Hj= l x~ P~)I<~>~,.~ =o Xij(1- P~ ] 

x[  1-I (1-x~)]~exp[-E,(a,n)] 
<U> n~ --I ~-n 

(17) 
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We also have 

P(nla) -P(tr'n~) l~ [xUPOfn~:,I +Xo'(1--PiJ) 6n~,O+(1--Xu)finO'.--1] 
P(~) <~>,~=~j 

X I-[ [XijC~no,O+(1--Xij) Onu,-l] (18) 
(O'),~ri~aj 

which means that the probabilities to find an energy, an open, or a closed 
bond between parallel spins are 1 -x i j ,  xu(1 -Pu ) ,  and xo.po., respectively, 
between spins in different states (1-x~j), x~., O. On the other hand, we 
obtain 

P(cr, n) exp[ -E~(a ,  n)] I-I 6~iv (19) 
P(aln) P(n) Z,~,,exp[-E~(a',n)] <,7>,,0= 1 

i.e., the clusters defined by the bond configuration n are not independent, 
but their orientations have a statistical weight given by their surface energy. 
Be aware that for xu=  1 for all (i, j }  there are no energy bonds, so the 
surface energy vanishes and we have to count for the number of possible 
independent cluster orientations, which gives Eq. (12) again. This transition 
probability can easily be obtained by a standard Metropolis or heat-bath 
algorithm where each cluster is flipped due to the restriction that the 
energy has to be lowered or raised with a certain probability depending on 
the energy difference between the old and the new state. Again in the case 
x~j = 1 for all (i, j }  there is no energy difference between different orienta- 
tions of the clusters and we recover the Swendsen-Wang algorithm. On the 
other hand, if the x u are chosen to be zero for all (i, j} ,  there exist only 
energy bonds, the clusters are reduced to the size of one spin, and we get 
the usual single-spin-flip dynamic of the standard Monte Carlo simulation. 
Varying the x u homogeneously from zero to one, the clusters will become 
larger and the surface energy will tend to zero, transforming into a "bulk" 
energy given by the number of closed bonds for the total energy remaining 
constant (see also the next section, where an explicit identity between the 
number of closed bonds and energy is given). The choice of the set x u does 
not affect the equilibrium behavior of the model, but the dynamics of the 
simulation, allowing for continuous variation between a local or more 
global dynamics. It is known (23'39'4~ that the critical slowing down 
approaching the critical point can be lowered substantially by choosing a 
more global dynamics instead of a local dynamics. So this model allows for 
a systematic investigation of this effect. There is also the possibility for a 
mixed choice x o. = 0, 1 for adapting the model to optimum parallelization, 
if one wishes to use parallel computers, dividing the whole system into 
identical subsystems where on the boundaries of these subsystems we 
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choose xij = 0 for a minimum of information transfer between different pro- 
cessors, regarding only the orientation of the boundary spins, and xij = 1 in 
the bulk of the subsystems in order to gain the acceleration due to the 
reduced critical slowing down. 

Let us further remark that the above treatment also allows for the 
application of an external field by introducing a ghost spin connected by 
a series of bonds to the initial spins of the system. The couplings are then 
directly given by the strength of the applied field. Choosing, for example, 
the extended set {x~j} to allow for energy bonds only (x~j = 0) if connecting 
to the ghost spin and for closed or opened bonds otherwise (x~j = 1), the 
conventional Swendsen-Wang algorithm is obtained, where the clusters are 
flipped independently, but with different probabilities into different states, 
depending on the cluster size and the external field. (41~ 

In the following we restrict ourselves to the case xo= 1 for all (i, j ) ,  
giving some additional equalities between cluster coordinates and macro- 
scopic observables in equilibrium due to the independence of the clusters 
which is essential for them to behave as "physical clusters," as will be 
shown explicitly in Section 3. 

For convenience we investigate the two-dimensional Ising model on 
the square lattice with periodic boundary conditions, zero external field, 
and homogeneous interactions Ju-J ,  using the conventional Ising 
Hamiltonian with ai = -1 ,  + 1 instead of a~ = 1, 2 in the Potts model, 

= - J  ~ aiaj (20) 
<#> 

Note that this transformation of coordinates only gives rise to an energy 
shift of the total energy and a change of the coupling constants by a factor 
of 2. 

The simulations are carried out by an implementation of the 
Swendsen-Wang algorithm; ref. 25 gives details on the simulation program. 
The cluster analysis is based on the Hoshen-Kopelman algorithm. (26) The 
program used in the following for L = 100 reached a speed of generating 
about 7 system configurations per second (in comparison to a single spin 
flip algorithm this would correspond to 7 x 10  4 Monte Carlo steps/sec) on 
a SIEMENS 7561 scalar computer (which roughly corresponds in speed to 
an IBM 3081 machine). Despite serious efforts, (25~ no efficiently vectorizing 
program code could be found, due to the complicated cluster analysis 
necessary for this algorithm. Thus, in spite of the conceptual advantage 
that the Swendsen-Wang algorithm (z3~ drastically reduces the correlations 
due to critical slowing down, for the linear dimensions L studied 
here (L ~< 100) only modest gains in statistical accuracy of the numerical 
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results occur, as compared to standard vectorized Ising model simulation 
algorithms at supercomputers. (27'28) One can, however, paralMize the 
Swendsen-Wang algorithm. (29/ 

3. T H E R M A L  PROPERTIES OF THE ISING M O D E L  
EXPRESSED IN T E R M S  OF PHYSICAL CLUSTERS 

In this section we consider internal energy, specific heat, magnetiza- 
tion, and susceptibility of the Ising model and use the cluster definition 
justified in  the previous section to express these thermal properties by 
properties of the cluster distribution. Unlike the case of the geometrical 
cluster definition, ~1'9) where only one cluster coordinate [-the cluster size l; 
cf. Eq. (1)] matters, one needs two "cluster coordinates, ''~3) relating to 
cluster magnetization m~t = l times the sign of the cluster orientation and 
the cluster energy, or equivalently the number u~z of bonds in a cluster 
denoted by {cl}, divided by the bond probability p [Eq. (3)]. If the 
number of clusters (per lattice site) with magnetization m~z and with u~p 
bonds is p(mc~, uct), we have the relation expressing the fact that every site 
must belong to some cluster 

~ Im~,l p(mc,, u~,)= 1 (21) 
rnel Ucl 

It is also useful to define the reduced cluster distributions depending on one 
coordinate only, 

p(mc,) = ~ p(md, uc,), p(uc,) = ~ p(mc,, uc,) (22) 
Ucl mcl 

From Eq. (20) we obtain 

9f = 2J (N-  NTr ) (23) 

since on the square lattice there occur 2N bonds. For (N,r )  pairs of 
parallel spins the average number of bonds (Nb) is ( N b ) =  p(N~r), and 
thus the energy per spin u = ( a f ) / N  can be written as 

u=-2j((Nb)" \ pN 1) 

or alternatively, in terms of (p(uct)), 

(24a) 

u= --2J (uc~ ud (p(ud) ) -- I ) (24b) 
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The specific heat is found as 

~(Sif > 1 4J 2 
C= o r - k B T 2 ( < J g 2 > - < 5 ~ > 2 ) : ~  (<N~>-<NrT>2) (25) 

where in the last step Eq. (23) was used. On the other hand, the first result 
of Eq. (25) implies, using Eq. (24a), 

Now the fluctuation relation for <Nb> analogous to Eq. (25) yields in 
Eq. (26) (q = 1 - p )  

C- 1 4J~((N~>_<Nb>2_q<Nb>) (27) 
- kB T 2 p2 

Thus, it is seen that the heat capacity is not only due to the fluctuation 
in the number of bonds, but there is also a correction term due to the 
fact that p is temperature dependent. Clearly this correction term is non- 
vanishing in the thermodynamic limit. 

It is instructive to calculate averages such as those involved in Eq. (25) 
directly from the general formalism of the previous section. For example, 
applying Eqs. (10) and (11), one finds 

<'N2> = E P(n) N~(n) 
n 

= Y' P(a) ~ P(n I a) N~(n) 

= ~ P(a) ~ pUb(')qNtT(,~)--Nb(,,)6,,,,,N2(n) 
G n 

= E P(a) ~ pN~,(,,)qN~r(,~)- NW,)N~(n ) 
r N b = O  \ Nb ,] 

= ~ P(a)[p2NTt(a) + pqNT~(a)] 
G 

= pZ<N~T > + pq<NrT > 

In this way Eq.(27) follows from Eq. (25), using once 
P<Nr~ > = <Nb> and defining 6,,,~ = I-[ <0>,~i~v 6nu" 

The magnetization per spin is written in terms of Eq. (22), 

M = (l/N) ~ ai = ~ mc, p(mc,) 
i m c l  

(28) 

more 

(29) 
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We split off from P(mct) the contribution of the largest cluster in the 
system, which we denote as m c~, 

p(mct) = p'(ma) + ( l /N) 6mc, m ~ (30) 

Note that for T > Tc and finite N there may occur several clusters with the 
same value lmc~ 1 in a configuration--the definition of Eq. (30) then 
requires that one of them arbitrarily is defined to be the largest cluster. If 
there are several clusters with the same value Imc~ [ but different sign, we 
choose for mc~ the same sign as for M. Thus, we obtain 

1 (  ~ a i >  < m~+~mdp'(rn~+) > (31, 
(IMI > = ~ = N - me, 

On the other hand, let P+  = [m~[/N be the fraction of sites belonging to 
the largest cluster; its mean ( P ~ )  is the percolation probability. Then we 
see that ( P ~ )  and (IMI > differ in a finite system, due to a contribution 
of clusters other than the largest ones: we have <]MI > ~> (Po~); the 
equality sign holds in the thermodynamic limit only. While 
<~_~m~mctp'(md)>=O, i.e., positive and negative values of the sum are 
equally probable, due to the absolute value in Eq. (31), IMI on the average 
is larger than P ~ .  This effect will be discussed more quantitatively in the 
next section. 

Similar extra terms appear when we relate the thermal susceptibility to 
the percolation susceptibility. Writing for the thermal susceptibility the 
fluctuation relation (we use an expression which has the proper thermo- 
dynamic limit for T <  Tc) (22'3~ 

kBT Z' = N ( ( M  2 ) - ( [M[)2 )  (32) 

we split the sum over correlations into terms due to the same cluster and 
due to different clusters: 

i j i , j  i , j  
in the  in different 

s a m e  c lus te r  c lus te rs  

(33) 

Now the last sum in Eq. (33) vanishes, since different clusters are not 
correlated with each other per construction. Furthermore, 

~ aiaj> =NE m2t(p(rnct)) 
i, j mcl 

in the  
s a m e  c lus te r  

(34) 
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Using again Eq. (30) to separate out the contribution of the largest cluster 
yields 

k B T z , = ~  2 , N ( ( P ~ )  (351 met( p (met)} + -- ( IMt }2) 
mcl 

For large systems and T <  T c it is a very good approximation to replace 
mct(p  (mc~)} = )~p as defined in Eq. (2)] ( Iml  } by (P~o }, to obtain [~ - .mc l  2 , . ,  

kB TZ' '~ kB TZ '(p) = gp + N( ( p 2  } _ ( p ~  }2) (36) 

Thus, the magnetic susceptibility has two contributions: the first one is due 
to the contribution of the clusters other than the largest ones, and this is 
the percolation susceptibility Xp that is usually considered. (71 The second 
contribution is due to fluctuations on the size of the percolating network. 

As discussed in more detail elsewhere, (22'3~ it is a consequence of 
the fact that the Ising model has a spontaneously broken symmetry in 
the thermodynamic limit, while finite systems cannot exhibit symmetry 
breaking, that different fluctuation formula must be used to describe the 
zero-field susceptibility above T c and below T j  Above T~, the expression 
replacing Eq. (32) is 

2 (37) kB TZ = N ( M  2 > = ~ me, (p(mc,) > = Zp 
mcl 

Thus, here the thermal susceptibility agrees exactly with the corresponding 
percolation property, provided the largest cluster is included in the summa- 
tion in Eq. (37) or Eq. (2), respectively. It should be noted that Eq. (37) 
also holds for T ~< Tc in finite systems, but gives the wrong thermodynamic 
limit. 

As will be discussed in the next section, Zp in Eq. (36) and the term 
N((P~)-(Poo) 2) diverge with the same critical exponent as T--, To. 
Thus, we have X' proportional to X~, as requested. However, it is clear that 
the critical amplitudes of Z' and Z~ differ, while they agree for ~ and Xp 
above To. But this implies that the universal ratios X/Z' and Xp/7~'p must 
differ from each other. 

4. N U M E R I C A L  R E S U L T S  A N D  
F I N I T E - S I Z E  S C A L I N G  A N A L Y S I S  

As a direct example that geometrical clusters are too large to describe 
magnetic correlations in an Ising model, Fig. 1 compares the pair connec- 
tedness function Co, i with the spin pair correlation function (sOSl). It is 
seen that co, i distinctly exceeds (sosi},  while the pair connectedness rune- 
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Fig. 1. Correlation function <SoSg> versus distance i in a lattice direction of a 100 x 100 Ising 
lattice at T =  1.05T c ( + )  as compared to the pair connectedness function of geometrical 
clusters (*) and of physical clusters (x). 

tion for physical clusters as generated by the Swendsen-Wang algorithm is 
in good agreement with <SoSi). At the same time, Fig. 1 shows that the 
description in terms of physical clusters works above Tc as well--previous 
numerical work on clusters (3'9'1wxs'22) always has considered only T< To. 

Figure 2a then compares the energy computed in two ways~tirectly 
as an expectation value of the Hamiltonian, and from the expectation value 
(Nb)  of the number of bonds, using Eq. (24a). The excellent agreement 
between both approaches not only shows the consistency of our numerical 
procedures, but also means that the statistical effort is sufficient to reach a 
reasonable accuracy for this quantity. For the specific heat (Fig. 2b) also 
the results extracted from energy fluctuations are found to be consistent 
with the results from bond number fluctuations [Eq. (27)], though in this 
case just above Tc statistical errors lead to appreciable scatter. 

Figure 3 compares the magnetization (IMI > and the percolation 
probability <P~) .  As expected from Eq. (31), <[M[) and < P ~ )  are in 
quantitative agreement for T distinctly lower than To, while for T k  Tc it 
is seen that < [M[ > exceeds P~ distinctly. This clearly reflects the fact that 
many clusters contribute to <[M[ > for T>  To, not only the largest cluster 
that is measured by <Po~ >. In fact, the asymptotic finite-size dependence of 
< [M[ > follows from the fact that the distribution of M for T> T c is a 
Gaussian distribution with width controlled by Eq. (37) and hence (22'3~ 

<[MI>,.~L-d/2=L -1, L ~ o c ,  T>  T C (38) 
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Fig. 2. (a) Internal energy (in units of the exchange) plotted versus temperature (in units of 
To) for a 60x60 lattice. ( + )  Expectation value of the Hamiltonian; (x) from Eq. (24a). 
(b) Normalized heat capacity kB T2C/J 2 plotted versus TIT c for a 20 x 20 lattice. ( + )  Result 
using C from energy fluctuations [Eq. (25)]; (x) resulting using C from bond number fluctua- 
tions [Eq. (27)]. 
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sizes: <IMI> for (+) L=20, (.) L=40, and (O) L=100, and Po~ is for (• L=20, 
([5) L=40, and (~) L= 100. 

for d =  2 dimensions, while the percolation probability can be shown to 
vanish according to a quicker variation with L, namely (31) 

( P ~ ) ~ L  dlogL,  L ~ ,  T > T c  (39) 

Although both quantities (JMI } and ( P ~ )  for the physical clusters are 
expected to exhibit finite-size scaling relations (3~ of the same form, 

(IM[ } = L-~/VM(~L1/V), e = T / T  c - 1 (40a) 

( P ~  ) = L-#/~'Po~(eL1/V ) (40b) 

the scaling functions 3~, P~ must differ in order to reflect the two distinct 
asymptotic behaviors expressed in Eqs. (38), (39). Figure 4 presents a test 
of relations (40a) and (40b). Although finite-size scaling is reasonably well 
obeyed, one also recognizes systematic deviations due to corrections to 
finite-size scaling beyond the statistical scatter. High-precision data for 
much larger values of L would be required in order to provide clear 
numerical evidence for Eqs. (38), (39). This was outside the scope of our 
study. 

Finally, we turn to the behavior of the susceptibilities )(  and Z '(p) 
[Fig. 5; cf. Eqs. (35), (36)]. In this case the approximate result Z '(p) 
expressed in terms of percolation properties only lies systematically above 
Z', because in the latter asystematically larger term ( (FM])2>  (Poo)2) is 



602  D ' O n o r i o  D e  M e o  e t  al. 

subtracted. While near Tc both terms in Eq. (36) scale in the same way 
with system size, again their asymptotic behavior for large L at fixed 

t T> Tc is different: Zp goes to a finite constant, while ~ 

N(<P~>-<Poo>=)~L alog2 L, T>Tc (41) 

While the fluctuation of the largest cluster makes a significant contribution 
below To, it is rather unimportant above Tc (Fig. 6). Since both Z' and Z; 
for T> Tc go to finite constants, the asymptotic behavior of the finite-size 
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Fig. 4. Finite-size scaling plot of the magnetization (upper part) and of the percolation 
probability (lower part). The exponents used in the plot were the theoretical 18) values of 
the two-dimensional Ising model,  /3 = 1/8, v = 1, as well as the exactly known (8) critical 
temperature. Same sizes as shown in Fig. 3 were used. 
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sys tem sizes. Ful l  curves refer to )( and  b roken  curves to Z '~  

scaling functions )~', 2 t(p) defined by the following finite-size scaling relation 
is qualitatively the same, although the functions themselves again differ: 

kB TZ' = L #v~'(eLln) (42a) 

k B TX '(p) = L 7/vz'(P)(~,L1/7) (42b) 

A check of these relations is provided in Fig. 7. Of course, a similar scaling 
relation can also be studied for k B TZ [Eq. (37)], but this is omitted here. 
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Fig. 6. Normalized fluctuation (zfP)2---N((P~) - (p~ )2 )  of the largest cluster (full 
curves) and second moment of the cluster distribution {Z/2n, =- ~ ' , ~ ,m~ ,<  p'(mcl ) = X'p} 
(broken curves) plotted vs. T/T,.. 
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5. THE CLUSTER SIZE DISTRIBUTION 

In this section the numerical  results on  the cluster size distribution 
nr = P(mcl  = t ) +  p(mc~ = - l )  are presented. Again it is useful in each con-  
f iguration to split off the contr ibut ion of  the largest cluster, whose  size is 
denoted  as loo, 

1 
nt = n~ + ~ 6t, loo (43) 
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Taking an ensemble average, the size loo of the largest cluster fluctuates 
from one configuration to the next, of course, and thus from the average 
of the Kronecker symbol we obtain a continuous function fi~ such that 

f f~= f i /+ f f~  (44) 

While at temperatures T >  Tc both distributions fi~, fi2 ~ strongly overlap 
each other, for T < T~ they are rather clearly separated, at least for large 
enough linear dimensions L (Figs, 8-10). Additional such data for L = 20 
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are displayed in ref. 25. Of course, the first moment of the distribution ~9 
is related to the percolation probability (Po~) as 

( P ~ )  = ~ lh~ = [ ~ / N  (45) 
l 

It is interesting to note that the distribution fT  is distinctly non-Gaussian. 
From the discussion of the finite-size behavior of ( P ~ )  in the previous 
section we immediately conclude (for N =  L a) 

[~ ~ L", T< T~ 

[~  ~ L d-  ~1", T = T c 

[oo ~ log L, T > Tc 

(46a) 

(46b) 

(46c) 

The width of the distribution ~;~ is given by the fluctuations of the percola- 
tion probability 

I ~  / / ,2"]1/2 

From the finite size-behavior of Zp and Eq. (41) we conclude 

d-ll ~ ~ h d/R, T <  Tc (48a) 

A---?l ~ ,-~ L (a+ ~/vt/2 = L d ~/~, T =  T~ (48b) 

Al ~ ~log L, T >  T,. (48c) 

Combining Eqs. (46) and (48), we see that the relative error of the percola- 
tion probability (or, equivalently, the mean size [~ of the largest cluster) 
is independent of L for T>~ T~: 

dP~o _ d l  ~ ~ fconst, T>~ Tc (49a) 
( P ~ )  [~  [ L  -a/2, T <  T~ (49b) 

Thus, (Pc~) (or [~) are "strongly self-averaging ''(z2,36) for T<  Tc only, 
while for T~> Tc complete lack of self-averaging is exhibited. This fact is 
responsible for the lack of narrowing of fi~ for T~> Tc with increasing size. 

While the shape of the distribution fi~ changes dramatically as T 
increases from T<  Tc to T> Tc [-for T<  T~ it asymptotically becomes a 
Gaussian; cf. Eq. (49b) and Fig. 10a; notice also the pronounced flatness 
of the ~;* vs. l curves just above Tc], the distribution 1/; shows much 
less structure; it is a monotonically decreasing function of cluster size 
both below To, above To, and right at To. Previous work (3,9,18) has usually 

822/60/5-6-6 
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discussed only ~ for T ~< To, mostly applying the inappropriate geometrical 
cluster definition. 

We now turn to the finite-size scaling description of the cluster size 
distributions ~T and ~ ,  respectively: 

f i~(T,  L) = L (2a-#/v)Yz~{lL-(a-B/v), ~L w~ } (50a) 

fi~(T, L ) =  L-(2d-#/~)K{IL -(a-#/~), eL w~ } (50b) 

~ K where n ~ are suitable scaling functions, which now depend on two 
arguments. While the argument eL 1Iv is of course the standard argument 
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appearing in finite-size scaling functions, (3~ the other argument 
lL -(d-~/~) needs comment. Here we have invoked the principle that at T~ 
all cluster sizes scale with L in the same way and hence also in the same 
way a s / ~ ,  for which we know already that [o~~ Ld-P/~ [Eq. (46b)]. Since 
in each configuration there is just one largest cluster t ~ [Eq. (43)], we 
have the normalization 

I = N ~ f i ? = L  d dlf i[  ~= d~ ~ ( ~ ,  ~L 1/" ) (51) 
l 

Since n9 vanishes for large L both for l --, 0 and for l ~ o% and the main 
contribution comes from values of l which are of the same order as the 
(large) number [~, we could replace the summation in Eq. (51) by an 
integral with negligible error. Equation(51) fixes the prefactor as 
L -(2d-~/v) in Eq. (50a). We then make the further assumption that r~/~ and 
fi~ should scale in the same way, and thus obtain Eq. (50b). In order to 
make contact with the more traditional scaling theories for clusters, ~ we 
define the exponents z, a as follows: 

.c = 2 + 1/6, r = 1/(fl&) (52) 

and note that the exponents used in Eq. (50) can be rewritten in terms of 
r, ~ as follows: 

2 d -  fl/7 = z/(va), d- /~/v = 1/(w) (53) 

Therefore, Eqs. (50a), (50b) can also be written as follows, redefining 
suitably the homogeneous functions: 

fi~( T, L) = L -  ~/(~'~)Yt~176 { lL -1/~'~, eL 1/~ } 

= l - ~  ~176 {eU, U/L  1/~ } (54a) 

rt;(T, L )=  L-~/(w)F({IL -1/w, eL '/v } 

= I - ~ ' { e U ,  U/L  I/v } (54b) 

In the limit L ~ oe where the second argument of ~o~, n' vanishes, Eqs. 
(54a), (54b) take exactly the form postulated in ref. 3. Note, however, that 
while we expect ~'(el ~, 0) to exist, one must not put the argument U/L ~/v 
equal to zero in ~o~, since this function is singular in the limit L --* 0% in 
order to yield Eq. (46b). 

The temperatures in Figs. 8-10 were chosen such that finite-size scal- 
ing can be studied for five choices of eL ~/~ = eL, namely eL = _+2, _+ 1, and 
0. Figures 11-15 suggest that the scaling relations (50a), (50b), (54a), (54b) 
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Different symbols represent sizes and temperatures as indicated in the figure. 

are indeed true! Note that for f i t  we have used the variables of ordinate 
and abscissa in Figs. l la -15a  appropriate for Eq. (50a), while for f ;  
we have chosen a form equivalent to Eq. (54b), namely f ~ ( T ,L ) =  
Is] ~/" N'(eU, eLl~V), apart from the case e = 0, where variables according to 
Eq. (54b) were chosen (Fig. 13b). This figure shows systematic deviations 
from finite-size scaling for very small l, while for large l, statistical scatter 
sets in. 

There are various attempts to describe the distribution function n~. 
According to the Fisher (1) droplet model, n~ ~ l -~ exp( -cons t  [~l l~). Thus, 
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4 

1 . 0  

in a plot of log(n;) versus el ~ (Figs. 1 lb, 12b) one should see a straight line 
for large I. Although the data are roughly consistent with such a behavior, 
the strong statistical scatter present for large let l~ prevents us from making 
strong statements about this problem. For  T >  To, on the other hand, 
arguments exist (3'17) which imply that l o g ( n ; ) ~ l  for large /. This implies 
that on a plot of log(n;) vs. el" one should see a distinct downward 
curvature, and this is in fact seen in Fig. 15b for large el ". 

For  e < 0 ( T <  To) and ]e] L ~ ~ we expect that asymptotically (for 
I ~ o o )  the distribution fi~ can be interpreted as ~ . , ~ e x p ( - - A F l / k B T  ), 
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where AF~ is the formation free energy of a droplet, which (in the absence 
of a magnetic field, i.e., at the coexistence curve of the Ising model) should 
be describable basically by a surface free energy of the droplet, i.e., surface 
area times surface tension. (3) This regime: is only reached if clusters are 
studied w h o s e  linear dimensions are much larger than the correlation 
length. A substantially larger statistical effort than available here would be 
needed for such a study. The present study has taken about 100 hr CPU 
time on a Siemens 7561 scalar computer. 
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6.  C O N C L U S I O N S  

In this paper the Swendsen-Wang algorithm (23) for the two-dimen- 
sional Ising model was applied to study the physical clusters near the criti- 
cal point. The justification of the algorithm in terms of t h e  For tuin-  
Kasteleyn mapping to correlated percolation problems is used as a starting 
point to derive fluctuation relations for specific heat and susceptibility in 
terms of cluster properties, and a comparative study of the finite-size effects 
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on percolation probability and magnetic order parameter is presented. 
While these two quantities coincide in the thermodynamic limit, finite-size 
corrections are systematically different. In contrast, the magnetic suscep- 
tibility below T c differs from the corresponding percolation susceptibility 
even in the thermodynamic limit, due to a contribution expressing fluctua- 
tions in the magnetic moment of the percolating cluster. These general con- 
siderations are explicitly illustrated by detailed Monte  Carlo results; while 
finite-size scaling of thermal properties for the Ising model has been studied 
in detail before, our corresponding results for the associated correlated 
percolation problem are new. The resulting scaling functions are estimated 
numerically and show all expected general properties~ 

The main result of the present paper is the detailed analysis of the size 
distribution of the physical clusters. Both the distribution function of the 
largest cluster which below Tc represents the percolating network--and 
the distribution of the remaining finite clusters are studied. Both distribu- 
tion functions are consistent with finite-size scaling and with thermal 
scaling, providing thus the first clear evidence for scaling hypotheses in 
terms of clusters, which were proposed more than 12 years ago, but have 
not yet been tested so far. Our results on the cluster distributions include 
data for both below and above To, but are for zero external magnetic field 
only. 

Clearly a crucial point for the feasibility of this study was the strong 
reduction of critical slowing down provided by the algorithm: Since the 
relaxation time only increases much more slowly than the standard single 
spin-flip kinetic Ising model (23'4~ even for L = 100, it suffices to skip ~t = 50 
steps between successive configurations used in the averaging in order that 
they are uncorrelated. Thus, significant statistical effort on the cluster size 
distribution was possible with moderate effort. 

Of course, it would be desirable to include the magnetic field into the 
problem and to study much larger values of L, as in the standard random 
percolation problem, (7) in order to obtain results of very high precision. 
Another very desirable extension concerns work on problems with 
quenched-in randomness, where critical slowing down is even more 
severe. (37) 
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